Boris Obsieger

NUMERICAL METHODS II

Roots and Equation Systems

Including SEM and ISS algorithms
1. ROOT-FINDING METHODS

Motivation for developing various root-finding methods arises from the requirement to approximate the roots of different functions with wanted accuracy by using as few numerical operations as possible.

The roots of a function \(f(x) \), also called the zeros of a function, are points on the abscissa where this function has the zero value, i.e. where \(f(x) = 0 \). To find a particular root, it is required to know

- the first approximation of the root, hopefully close to the root (Fig. 1.1a), or
- ideally, points that bracket the root (Fig. 1.1b).

Fig. 1.1. Basic requirements: a – first approximation, b – points that bracket the root

In an interval close to the root and to its first approximation \(x_0 \), or in the interval \([a, b] \) that brackets the root, a function needs to be well-behaved\(^1\).

\(^1\) The term „well-behaved“ has no fixed formal definition, and it depends on the subject.
Functions that are not well-behaved in an interval of interest have, for example,
- singularity (Fig. 1.2a),
- an infinite number of roots (e.g. sin(1/x), Fig. 1.2b), or
- an extreme at the root (very difficult to find, Fig. 1.2c).

![Fig. 1.2. Functions with: a – singularity, b – infinite number of roots, c – extreme at the root](image)

During the history various root-finding methods have been developed. The oldest one is probably the Babylonian method that was used in Mesopotamia about 1800 BC. That has been the most efficient iterative method\(^1\) for finding the square root known until today.

The ancient Babylonians had a nice method of computing square roots by using only simple arithmetic operations. For example, let the rational approximation for the square root of the number \(a\) begin with an initial estimate \(x_0\). If the \(k\)th estimate \(x_k\) is lesser than \(\sqrt{a}\), then \(a/x_k\) is greater than \(\sqrt{a}\), or, vice versa, if \(x_k\) is greater than \(\sqrt{a}\), then \(a/x_k\) is less than \(\sqrt{a}\). It follows that the average of these two numbers, \(x_k\) and \(a/x_k\), gives a better estimate

\[
x_{k+1} = \frac{x_k + a/x_k}{2}.
\]

This formula\(^2\) is sometimes attributed to Heron of Alexandria (about 10-70 AC) because he described it in his *Metrica*, but it was undoubtedly known to the Babylonians much earlier. For that reason, in this book the method is referred to as the Babylonian/Heron method.

1. The *iteration* means 1. the act of repeating, a repetition; 2. (*Mathematics*) a problem-solving or computational method in which a succession of approximations, each building on the one preceding, is used to achieve desired degree of accuracy, or 3. an instance of the use of this method; 4. (*Computers*) a repetition of a statement or statements in a program.

2. The same formula is developed in Chapter 1.5.1, by specialisation of *Newton’s method.*
The approximation x_k converges very rapidly to the square root of a, as shown in Example 1.1. When the approximation is close to the solution, the number of accurate digits doubles with each iteration. Such convergence is called the quadratic convergence.

Example 1.1. Finding a square root with the Babylonian/Heron method.

Successive approximations in finding the square root of $a = 2$ with the Babylonian/Heron, starting with $x_1 = a$ as the first estimate, are listed in Tab. 1.1. The recursion (1.1) is used.

<table>
<thead>
<tr>
<th>k</th>
<th>x_k</th>
<th>Accuracy digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,000 000 000 000 000 000 000 000 000 000 000</td>
<td>(48)</td>
</tr>
<tr>
<td>1</td>
<td>1,500 000 000 000 000 000 000 000 000 000 000</td>
<td>1,5</td>
</tr>
<tr>
<td>2</td>
<td>1,416 666 666 666 666 666 666 666 666 666 666</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1,414 215 686 274 509 803 921 568 627 451</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1,414 213 562 374 689 910 626 295 578 890</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>1,414 213 562 373 095 048 801 689 623 503</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>1,414 213 562 373 095 048 801 688 724 210</td>
<td>(48)</td>
</tr>
</tbody>
</table>

The number of accurate digits was doubled with the each iteration so that the method manifests the quadratic convergence.

1.1 CLASSIFICATION OF ROOT-FINDING METHODS

The root-finding methods can be classified either as

- General root-finding methods, or
- Specialised (problem specific) root-finding methods.

General root-finding methods are iterative (use recursive formulas or/and recursive algorithms). Efficiency, applicability and reliability of a particular general root-finding method depend on a function, the roots of which are to be found. For that reason, it is not possible to proclaim the best one.
General root-finding methods can be classified as

- Open root-finding methods,
- Bracketing root-finding methods or
- Multi-dimensional root-finding methods.

The open root-finding methods have not a predefined initial interval that brackets the root (Fig. 1.1a). Unlike the open methods, the bracketing methods are characterised by the initial interval containing the root (Fig. 1.1b). In each iteration, the interval is divided into two smaller intervals. The one that contains the root is used in the next iteration.

Unlike the general root-finding methods, which are all iterative, the specialised root-finding methods can be either direct or iterative. Specialised iterative methods are usually developed by specialisation of general root finding methods. However, any problem can be solved by several methods, but the efficiency and reliability of the particular specialised method must be separately found out.

The best-known root-finding methods described in this chapter are:

OPEN ROOT-FINDING METHODS (CHAPTER 1.2)

1. *Fixed point iteration*, repetitive approximation of the root of a function \(g(x) = x \), by using the recursion formula \(x_{n+1} = g(x_n) \), which is expected to converge to the root.

2. *Newton’s method*, also known as the Newton-Rapson method, consists in successive approximation of the root by using the tangent of a function to find the next approximation. The method is reliable and fast with quadratic convergence if applied to the single root of a continuous function that does not change the sign of the first derivative in the interval between the first estimate and the exact root.

3. *Halley’s method*, is similar to Newton’s method, but it uses the first two derivatives of a function. The convergence is cubic, but each iteration requires computing a function as well as its first and second derivatives.

4. *Householder's methods*, the class of root-finding algorithms using derivatives up to order \(d + 1 \). If \(d = 1 \), the method is equal to Newton’s method, whereas if \(d = 2 \), the method is equal to Halley’s method. The rate of convergence is \(d + 1 \).
5. **Secant method** is similar to Newton’s method, but it uses the secant through the last two computed points instead of the tangent in the single point. The convergence is superlinear (with order 1.62).

6. **Steffensen's method** is similar to Newton’s method. It also achieves quadratic convergence, but it does not use the derivative. Instead of the first derivative, a *slope function* is used. The main advantage of Steffensen's method is that it has quadratic convergence like Newton's method, but does not require any development of the derivative.

7. **Müller's method**, also known as the *Müller-Traub method*, uses the last three points to determine the coefficients of the parabola $y = ax^2 + b$, and takes the intersection of the parabola and the x-axis to be the next approximation. The order of convergence is approximately 1.84.

8. **Inverse quadratic interpolation** constructs an “inverse” parabola through the last three points. Instead of finding the coefficients of the related quadratic equation $x = at^2 + b$, the method uses inverse quadratic interpolation to find the next approximation of the root.

9. **Modified secant method** uses the last three points to construct a rational function and takes the intersection of its graph and the x-axis as the next approximation of the root.

Bracketing Root-Finding Methods (Chapter 1.3)

10. **Bisection method**, repetitive bisection of the interval containing the root, is the most robust and reliable root-finding method with predictable number of numerical operations, applicable to any continuous function when the minimisation of numerical operations is not a main priority.

11. **Dekker’s method** is a combination of the bisection method and the linear interpolation or extrapolation. The bisection provides reliability, while the interpolation increases the speed.

12. **Brent’s method** is a complex root-finding algorithm that combines the bisection method with the inverse quadratic interpolation. It has not only the reliability of the bisection method but it can be also as quick as some less reliable methods.

13. **False position method**, also known as *Regula falsi method*, consists in repetitive splitting the interval containing the root by using linear interpolation on the actual interval. In comparison with the bisection method, in some cases it is faster, but in some cases it is slower and not so reliable and predictable. The used iteration formula is formally equal
to those used in the secant method, but with different rules for retaining the two points for the next iteration.

14. **Ridder’s method** is a modification of the false position method based on the use of exponential function instead of linear interpolation. This method is extraordinary robust like the bisection method. The rate of convergence is 1.41 per each function evaluation.

15. **Modified false-position method** uses three points to construct a rational function at each iteration, and takes the intersection of its graph and the \(x \)-axis to be the next approximation.

16. **Illinois algorithm** is the improved “modified false position method” that prevents the retention of the old points. This is done by determining the optimal downscaling coefficient. The algorithm is simple and reliable with the rate of convergence 1.44 per each function evaluation.

SPECIALISED ITERATIVE METHODS (CHAPTERS 1.4 TO 1.7)

17. **Newton-Raphson division** is the application of Newton’s method to the division (Chapter 1.4).

18. Square-root methods (Chapter 1.5)
 a. **The Babylonian/Heron method**, the oldest and possibly the most efficient iterative method for finding the square root of a real number. It can be developed from Newton’s recursion formula.
 b. Methods based on Halley’s and Householder’s recursion formulas.

19. Inverse square-root methods (Chapter 1.6), the methods for computing the inverse of the square-root based on Newton’s, Halley’s and Householder’s recursion formulas.

20. **\(N \)-th root algorithms** (Chapter 1.7), the methods for computing \(n^{\text{th}} \) root based on Newton’s and Halley’s iteration formulas.

MULTI-DIMENSIONAL ROOT-FINDING METHODS (CHAPTER 1.8)

21. Multi-dimensional fixed point iteration; the generalisation of the one-dimensional fixed point iteration.

22. Multi-dimensional **Newton’s method**, the generalisation of the one-dimensional Newton’s method.

1.2 OPEN ROOT-FINDING METHODS

The open root-finding methods are iterative methods. With the exception of the fixed-point iteration, the common property of open methods is that the next guess of the root is computed by extrapolation. The extrapolation can be linear or higher order, depending on the number of sampling points in which a function and possibly its derivatives are calculated (Tab. 1.2).

Tab. 1.2. Open methods classified by order of extrapolation

<table>
<thead>
<tr>
<th>Extrapolation</th>
<th>Points</th>
<th>Derivatives</th>
<th>Method</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1</td>
<td>(none)</td>
<td>Fixed-point</td>
<td>1.2.1</td>
</tr>
<tr>
<td>Linear</td>
<td>1</td>
<td>$f'(x)$</td>
<td>Newton’s</td>
<td>1.2.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(none)</td>
<td>Secant</td>
<td>1.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steffenson’s</td>
<td>1.2.6</td>
</tr>
<tr>
<td>Quadratic</td>
<td>1</td>
<td>$f'(x)$, $f''(x)$</td>
<td>Halley’s</td>
<td>1.2.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(none)</td>
<td>Müller's</td>
<td>1.2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverse quadratic</td>
<td>1.2.8</td>
</tr>
<tr>
<td>Cubic</td>
<td>1</td>
<td>$f'(x)$, $f''(x)$, $f'''(x)$</td>
<td>Householder’s 3rd order</td>
<td>1.2.4</td>
</tr>
<tr>
<td>High order</td>
<td>1</td>
<td>$f'(x)$ … $f^{(n)}(x)$</td>
<td>Householder’s n-th order</td>
<td>1.2.9</td>
</tr>
<tr>
<td>Rational function</td>
<td>3</td>
<td>(none)</td>
<td>Modified secant</td>
<td></td>
</tr>
</tbody>
</table>

Open methods have some advantages and disadvantages (Tab. 1.3). Their common disadvantage is that the first guess must be sufficiently close to the root. As the first guess is closer to the root, the convergence will be faster. But even then, the convergence is not always guaranteed. The possibility that the particular method will fail usually depends not only on the choice of the first guess, but also on functions and the multiplicity of their roots. However, in some cases, as in the case of the Babylonian method (Chapter 1.5.1), which can be derived by a specialisation of Newton’s method, the convergence is always guaranteed.
Tab. 1.3. Main advantages and disadvantages of the open root-finding methods

<table>
<thead>
<tr>
<th>Main advantages</th>
<th>Main disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fixed point iteration</td>
<td>CHAPTER 1.2.1</td>
</tr>
<tr>
<td>The simplest method.</td>
<td>If convergence exists, it can be slow.</td>
</tr>
<tr>
<td>2. Newton’s method</td>
<td>CHAPTER 1.2.2</td>
</tr>
<tr>
<td>Reliable and fast method with the quadratic convergence.</td>
<td>The first derivative of a function must be developed.</td>
</tr>
<tr>
<td>3. Halley’s method</td>
<td>CHAPTER 1.2.3</td>
</tr>
<tr>
<td>Reliable and fast method with the cubic convergence.</td>
<td>The first and second derivative of a function must be developed.</td>
</tr>
<tr>
<td>4. Householder's methods</td>
<td>CHAPTER 1.2.4</td>
</tr>
<tr>
<td>Reliable and fast methods with the convergence order $d + 1$.</td>
<td>The first d derivatives of a function must be developed.</td>
</tr>
<tr>
<td>5. The Secant method</td>
<td>CHAPTER 1.2.5</td>
</tr>
<tr>
<td>Doesn’t require the first derivative. Superlinear convergence (order 1,62).</td>
<td>Requires two points to define secant. Slower convergence.</td>
</tr>
<tr>
<td>6. Steffensen's method</td>
<td>CHAPTER 1.2.6</td>
</tr>
<tr>
<td>Doesn’t require the first derivative. Quadratic convergence.</td>
<td>Double function evaluation in each iteration.</td>
</tr>
<tr>
<td>7. Müller's method</td>
<td>CHAPTER 1.2.7</td>
</tr>
<tr>
<td>Doesn’t require derivatives. The order of convergence is 1,84.</td>
<td>Computes three points to define the interpolation parabola.</td>
</tr>
<tr>
<td>8. Inverse quadratic interpolation</td>
<td>CHAPTER 1.2.8</td>
</tr>
<tr>
<td>Doesn’t require derivatives.</td>
<td>Requires three points for inverse interpolation with the parabola.</td>
</tr>
<tr>
<td>9. Modified secant method</td>
<td>CHAPTER 1.2.9</td>
</tr>
<tr>
<td>Doesn’t require derivatives.</td>
<td>Requires three points for the extrapolation with rational function.</td>
</tr>
</tbody>
</table>
1.2.1 Fixed point iteration

The fixed point iteration is probably the simplest root finding method [1]. It consists in repetitive approximation for a root of a function \(f(x) \) by using the recursion formula

\[
x_{k+1} = g(x_k),
\]

(1.3)

where auxiliary function

\[
g(x) = f(x) + x.
\]

(1.2)

Two examples of fixed point iteration are given in Fig. 1.3. The root is determined by an intersection of the curve \(y = g(x) \) and the line \(y = x \). The example a illustrates a convergence, while the example b illustrates a divergence.

The main disadvantage of the method is that the convergence is not always guaranteed. It will be guaranteed only if \(|g'(x_k)| < 1 \).

Example 1.2. Application of fixed-point iteration to the function

\[
f(x) = \ln x + x - 2.4.
\]

(1.4)

The iteration formula is

\[
x_{k+1} = 2.4 - \ln x_k.
\]

(1.5)

Starting with \(x_0 = 2 \), the values in Tab. 1.4 are obtained. In the given example, the iteration is very slow although the first guess is close to the root. The calculated values oscillate around the true value. The accuracy of 10 digits is obtained after 34 steps – that is roughly one bit per step.
1.2.2 Newton’s method

Newton’s method is often referred to as one of the best-known methods for successively finding better approximations to the roots of real functions. The algorithm is the first in the class of Householder’s methods (Chapter 1.2.4). It often converges quickly, especially if the first iteration begins sufficiently near the root. Unfortunately, when the first iteration begins far from the root, Newton’s method can fail to converge.

Newton’s method requires a successive calculation of a function \(f_k = f(x_k) \) and its first derivative \(f'_k = f'(x_k) \) at sampling points \(x_k \). The first iteration begins with the calculation of \(f_0 = f(x_0) \) and \(f'_0 = f'(x_0) \) in an arbitrary initial value \(x_0 \), which is reasonably close to the root.

Starting with an initial value \(x_0 \), a tangent through the point \((x_0, f(x_0)) \) can be constructed, as it is illustrated in Fig. 1.4. The tangent has the equation

\[
y(x) = f'(x_0)(x - x_0) + f(x_0).
\]

The point \((x_1,0) \) in which the tangent intersects the \(x \)-axis, i.e. such a value \(x_1 \) that \(y(x_1) = 0 \), can be found by solving the following equation for \(x_1 \):

\[
f'(x_0)(x_1 - x_0) + f(x_0) = 0.
\]

1. Newton’s method is also known as the Newton-Raphson method, named after Isaac Newton and Joseph Raphson.
3. SEQUENTIAL ELIMINATION METHOD

The sequential elimination method (SEM) is the simple direct method for solving the linear equation system that uses much less computer memory than Gaussian elimination without increasing the number of numerical operations [22, 14]. Moreover, a size of utilised memory gradually changes, from zero to maximum and back to zero. As a result, when Gaussian elimination forces the operating system to swap data between the fast physical and the slow virtual memory\(^1\), the SEM algorithm can run most of the time (or even all the time) using only fast physical memory, i.e. without data swaps. Omitting data swaps is manifested in remarkable speedup of the SEM algorithm. The presented algorithm is optimized for solving regular linear equation system whose matrix is fully populated\(^2\).

\(^1\) Computer has fast (but expensive) central memory and slow (but cheap) peripheral memory. Central memory is virtually extended to the part of peripheral memory; thus it is talking about physical (but fast) part and virtual (but slow) part of central memory, or just about physical and virtual memory. The actually non-processing data in physical memory are swapped with the actually required data that has been previously swapped into virtual memory. Data swaps are performed automatically by the operating system whenever physical memory is overloaded.

\(^2\) Historically, SEM [22] arises through specialisation of a much older general method (1983. [13]), which can be efficiently used for solving linear equation systems as well as series of linear equation systems, either with populated or sparse system matrices [17, 23, 24]. If the matrix is sparse, there is no need to compute a complete solution. This provides remarkable reductions of utilised memory size and numerical operations. Moreover, number of numerical operations can be drastically reduced in solving series of linear equation systems, in which the particular system is a modification of the previous one [17, 18, 24]. The improved version of this general method is described in Chapter 4.
In the standard Gaussian elimination (Algorithm 2.1), the coefficients of equations are all stored in computer memory before the calculation begins. This strategy avoids minimisation of the required memory size. In the SEM, the coefficients of each equation are used for elimination immediately after the equation is entered, and there is no further need to keep them in computer memory [13,22]. The memory stores only the auxiliary coefficients of intermediate linear equation system defined by previously added equations. For that reason, the size of utilised memory gradually changes from zero to maximum and back to zero, and it is always remarkable less than that required for the Gaussian elimination method.

Sequential strategy

The principle of *sequential strategy* used in SEM, can be illustrated on the summation of N numbers (Fig. 3.1). Numbers can be first stored in memory and then summed (*typical summation*), or it can be done in steps, where each step consists in entering the number and adding it to the sum (*sequential summation*).

In all flowcharts it is assumed that unspecified increment in loops is +1. Therefore, $i = 1$ to N means $i = 1, 2, ..., N$. In addition, loop $i = a$ to b will not be executed if $a > b$, except if “step −1” is specified. For example, if $k = 1$, the loop $r = 1$ to $k − 1$ will be skipped.
Example 3.3. Memory utilisation.

The equation system with $N=10000$ equations has a matrix with $N(N+1)=10^8$ coefficients. If this system is solved by using Gaussian elimination, then the whole matrix is set before elimination. Assuming that one extended double precision FPN occupies 10 bytes, the matrix of the equation system will occupy almost 1 Gb of memory\(^{12}\) (Fig. 3.6).

![Diagram showing memory utilisation](image)

Fig. 3.6. Occupied memory in relation to number of actually entered equations for $N=10000$

To solve the system of $N=10000$ equations, the SEM initially occupies 98 kb for storing $N+1=10001$ coefficients of the first equation. The occupied memory gradually rises up to $=240$ Mb when the number of coefficients reaches its maximum $(N+1)^2/4+(N+1)=25\cdot10^6$. After that, the occupied memory gradually falls to 98 kb that contains the final solution ($N=10000$ coefficients).

\(^{12}\) Precisely 954 Mb (1 Gb = 1024 Mb, 1 Mb = 1024 kb, 1 kb = 1024 bites).
3.1.5 Programming SEM

A brief description of steps in SEM without pivoting is given in Algorithm 3.1. The same procedures are then written in the program languages ANSI FORTRAN and ANSI C (Algorithms 3.2 and 3.3). The use of these programs is supported by the main programs in the Algorithm 3.4 and 3.5 which can be used as a prototype for user’s own program. The programs were published in [18, 22].

Algorithm 3.1. SEM without pivoting

// Program can be divided into eight steps
// Step 1
Allocate memory and set initial values
\(k = 0 \) // An initial value of the equation counter
// Step 2
A: \(k = k + 1 \) Increment equation counter (\(k = k + 1 \))
Obtain and store coefficients \(a_{kj} \) of the \(k \)th equation
// Step 3
if \(k > 1 \) then // intermediate solution of the first \(k - 1 \) unknowns are known
// Eliminate unknowns \(x_1 \) to \(x_{k-1} \) in the \(k \)th equation
\((\forall j = k, ..., N + 1) \ a_{kj} = a_{kj} - \sum_{r=1}^{k-1} a_{kr} c_{rj} \)
endif
// Step 4 (assuming that \(a_{kk} \neq 0 \))
(\(\forall j = k + 1, ..., N + 1 \)) \(a_{kj} = a_{kj} / a_{kk} \)
// note: it is convenient to delay storing coefficients \(a_{kj} \) in \(c_{kj} \)
// Step 5
if \(k > 1 \) then // eliminate unknown \(x_k \) in the first \(k - 1 \) equations
((\(\forall i = 1, ..., k - 1 \)) \(\forall j = k + 1, ..., N + 1 \)) \(c_{ij} = c_{ij} - c_{ik} a_{kj} \)
endif
// Step 6 Store \(a_{kj} \) in \(c_{kj} \)
(\(\forall j = k + 1, ..., N + 1 \)) \(c_{kj} = a_{kj} \)
// Step 7
if \(k < N \) then goto A; endif //“A” is a label at the beginning of the step 2
Output results
Free allocated memory
end
4. Improved Sequential Substitution

Fig. 4.13. Second phase, elimination of a - unknown variable x_j, b - summation variable z_i

4.5.6. Closing equation

When a sequence (or all) coefficients of a particular equation are added, then that equation should be closed by using the function `closeeq(i,k)`. A prototype of this function is given in Algorithm 4.12. It has two arguments: an index i of the equation to be closed and a flag k.

If the equation has a form $z_i = \ldots$ (with $y_i = 0$), then the elimination of unknown variable x_j must be done by using the function `elimx()` (equation $z_i = \ldots$ is transformed into $x_j = \ldots y_i \ldots$). The unknown variable x_j that will be eliminated is chosen either by the implicit rule $j = i$, or by row pivoting (the function `rpivot()`). If flag k is set ($k > 0$), then the equation is closed forever by removing the column under y_i.
Boris Obsieger
NUMERICAL METHODS II
Roots and Equation Systems

The series of books Numerical Methods is written primarily for students at technical universities, but also as a useful handbook for engineers, PhD students and scientists.

This volume introduces the reader into various root finding methods and methods for solving linear and non-linear equation systems. Possibly, the most important parts of this book are descriptions of the methods for solving linear equation systems and series of such systems along with minimising computation time, minimising required memory and selective computation of only required unknowns.

Practical application is supported by 37 examples, 51 algorithms (including SEM and ISS) and 23 flowcharts. Algorithms are written in pseudo-code, FORTRAN or C that can be immediately implemented for any application.

About author
Boris Obsieger, D.Sc., professor at the University of Rijeka, Croatia. Head of Section for Machine Elements at the Faculty of Engineering in Rijeka. Holds lectures on Machine Elements Design, Robot Elements Design, Numerical Methods in Design and Boundary Element Method. Several invited lectures. President of CADAM Conferences. Main editor of international journal Advanced Engineering. Author of several books and a lot of scientific papers.